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-~ ._Datarama is a business intelligence company specializing in regulatory compliance. Combining advanced

tgchnology and expert human analysis, analysts at Datarama conduct due diligence on companies and

)
@ PROBLEM STATEMENT

The research work performed by the analysts in Datarama is
time-consuming, repetitive, manual, and has an undesirable
dependency on external paid services. How might we design a
system that streamlines the evaluation process for textual data
while easing Datarama's information ingestion process in order to
reduce the analysts routine work?

EIC SYSTEM ARCHITECTURE
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Our solution comprises a frontend, backend, database, and an NLP pipeline, linked
up by the RabbitMQ message broker to form the entire functioning system. Parallel
processing is applied to the NLP pipeline to improve computation efficiency.

@‘I FRONTEND WEB-APP
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1. Users will input web links to articles 2. Next, they will key in the entities
by uploading a .csv file, keying in 8 and corresponding sentiments, as well
search term, or by manually keying in  as topics they are interested in.
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3. After the articles are processed, 4. Finally, users may read and
users will shortlist articles to read. @ download the articles and their
Articles that match at least one query  corresponding analyses.

will be automatically shortlisted.
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\"\ provide clients with information on whether they conform to laws and standards in the business world.

@ OUR SOLUTION

An integrated NLP pipeline with GUI to provide a one-stop solution
for entity-sentiment analysis and topic identification, tuned
towards making compliance risk analysis more efficient.

& NLP MODELS

TOPIC MODELLING (TM) ENTITY-SENTIMENT ANALYSIS (ESA)

We used a graphical model, GraphSAGE  The ESA module comprises a8 Named Entity
(Hamilton et al., 2017), to identify topics = Recognition (NER) module and an
in articles. It leverages node features to  Aspect-Based Sentiment Analysis module
learn an embedding function that (ABSA).
generalizes to unseen documents.
We used BERT (Bidirectional Encoder
Each paragraph was treated as an Representations) (Devlin et. al., 2019)
individual document to predict multiple  vectors for the NER task.
topics for each article. The top three
most probable topics will be returned for ~ An ensemble method of two models was
each paragraph and displayed on the used to obtain the aspect-based sentiment.
frontend web-app. FINnBERT embeddings (Araci, 2019) were
used to obtain sentence vectors for the
ABSA task, as FIinBERT is specially trained
on financial news.
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Cg NLP MODEL PERFORMANCE

NER (BERT)

The metrics used for evaluating the TM,
NER, and ABSA models are precision, Rrecisioni Recall i
recall, and F1-score. PERSON 0.72 0.65 0.68
The reason why the NER and ABSA COM 0.53 0.51 0.52
models were better at detecting certain
classes can be attributed to the uneven GOV 0.33 0.29 O.31
class distributions in the data§et. Hence, FAM 0.22 0.28 0.24
we chose to use F1-score instead of
other metrics as it is more robust for this OTHER 0.21 0.15 0.18
type of dataset. )
TOPIC MODELLING ABSA (FINBERT)
Precision Recall F1 Precision Recall F1
Average 0.68 0.61 0.63 Positive 0.34 0.55 0.42
Best Topic 0.81 0.63 0.71 Neutral 0.96 0.90 0.93
Worst Topic 0.67 0.47 0.55 Negative 0.27 0.47 0.35

Q  USER FEEDBACK

The flow of the NLP process is quite clear. It will help us
streamline the research!

Having the flexibility to input articles from various sources
will help to reduce the time spent during research!
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